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networks 

R Meirt and J F Fontanarif 
t Bellmre 28.330, 445 South Street, Monistown, NJ 07960, USA 
t lnstiluto de Fisica e Quimica de SBo Carlos, Universidade de Sio Paulo, Caiia Postal 
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AbsImcL Ws study teaming and generalization in single-layer feedforward networks, 
whme weights are mnstrained to take on a discrete set of values. Our analytic mulls are 
obPined within the replica approach, which is verified thmugh Monte Carlo simulations. 
It B shown that, depending an the architecture of the network and on the source of 
the mining examples, three qualitatively different behaviours emerge. This distinction, 
which is manifested thmugh the dependence of the training and generalization m r s  on 
the size of the training set, suggests a possible way Lo determine the suitability of the 
architecture Lo the learning task. We mnjecture that this distinction B relevant Lo the 
more inleresting cast of multi-layered networks. 

1. Jntmduction 

We study learning from examples in single-layer feedforward neural networks, with 
dynamically constrained weights. The examples presented to the learning network, to 
be referred to as the studenf, are assumed to be generated by another perceptron, 
the teacher, which may have a different architecture. Since we discuss only single- 
layer networks, we use the word architecnrre to refer to the specific range of allowed 
weight values for a given network. While most leaming algorithms for neural networks 
implicitly assume unlimited precision in the weight specification, it is clearly the case 
both in hardware implementations and in biological systems that the weights are 
allowed to take on only a limited set of values. It is thus of interest, both from a 
practical as well a theoretical point of view, to study the specific properties inherent 
,U 3"Ul  >yya,Cxrra. I, w nrrG;rr;aLnlg L" U U L C  " I d L  RuaCLIvIaLL ('7U") W" a,rCauy swart: 

of the significance of learning in weightconstrained networks, although he did not 
propose any learning algorithm for such systems. 

It may seem quaint at this stage of research in neural networks to study learning 
and generalization in single-layer systems, whose computational limits are well known 
(Minsky and Papert 1969). We feel, however, that this endeavour is not without 
its merits. First, many of the questions concerning single-layer perceptrons, posed 
by Rosenblatt (1%2), have not yet been answered. Second, it is possible that the 
analytic tractability of the present model will afford us insight into learning in more 
complex networks, where analysis becomes much more ditlicult. In fact, we suggest 
in section 2 a possible connection between our model and multi-layered networks. 
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1150 R Meir and J F Fontanan 

Previous studies of learning from examples, in the physics literature, focused on 
real weights (Gardner and Derrida 1989, Gyorgy and Tishby 1989, Opper et a1 1990) 
as well as on binary weights (Gyorgy 1990, Seung et al 1991). Our aim here is to unify 
both approaches by considering the more general problem of learning in networks of 
dynamically limited weights, allowing us to obtain both the above situations as limiting 
cases of our formalism. As we will see, this approach also allows us to distinguish 
between three cases of interest. In the unrealizable case the computational p w e r  

the eracfly realizable case the architecture of the student and the teacher are exactly 
compatible, while in the over-realizable case the computational power of the student 
exceeds that of the example-generating teacher. All three cases can be treated using 
the same formalism and in fact the same equations. A single parameter determines 
whether the problem is realizable or not. As we show in section 5, the behaviour of 
the network is very different in each of these cases. We note also that the distinction 
between these three cases carries over to more complicated architectures as well. 

The results presented in this paper were all obtained within the replica framework 
(Mezard ef a1 1987), and in particular assuming replica symmetry (RS). We have also 
performed the annealed approximation for comparison purposes. Similarly to Seung 
ef a1 (1991) we find it to yield qualitatively correct results in some cases, while being 
inadequate in others. 

N e  remainder of the paper is organized as follows. We describe the model in 
detail in section 2, after which the annealed approximation is derived in section 3. 
Section 4 is devoted to the replica approach, with a derivation of the RS solution 
and the conditions for its local stability. Section 5 is devoted to a detailed discussion 
of our results, as well as a comparison with Monte Carlo simulations. We then 
summarize our findings and discuss some open questions in section 6. 

of ;he spG&iit LilsiiE,ficient Fifec;ky. liaiii ;hi Fe;s wppEed 3y ;>e teachei, hi 

2. The model 

We investigate a single-layer feedforward neural network with dynamically constrained 
weights. The examples are also generated by a weight-constrained single-layer percep- 
tron which we caii tbe teacher. The iearning network wiii be termed the sfudenf. For 
the sake of concreteness we focus on the following situation. The teacher perceptron 
weights, W?, are constrained to take on the 2 L t  discrete values 

wp=&- 1 2  i - , . . . , f l  

L t ’  Lt 

where the t subscript refers to teacher, while the weights of the student perceptron 
are constrained to take on the 2 L ,  values 

1 2  wi = *--,*--, . . . ,*l. 
La La 

Note that this choice is equivalent to the situation where the teacher and student are 
allowed to take on inferer values f l , i 2 , .  . . , i L t  and *l, f 2 , .  . . , f L s  respectively, 
since we will be concerned only with the case of a binary output which is a function 
only of the Sign of a weighted sum of the inputs. 
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At this point we would l i e  to draw the attention of the reader to an interesting 
connection between the single-layer problem we are studying and the multi-layered 
problem. Consider for example a two-layered network with L linear hidden units and 
binary weights throughout. It is easy to see that the response of the output unit in 
this network is identical to a single-layer network with weights constrained to take 
on integer weights fl, f2,. . . ,fL. In this sense, our results can be understood as 
referring to a linear multi-layered network with binary weights. Indeed, some of our 
results appear very reasonable when interpreting the number of levels as the number 
of hidden units in a multi-layer network. 

We emphasize that the specific form chosen in equations (1) and (2) is not at all 
limiting. Our equations are valid for any distribution of teacher and student weights, 
as long as they obey h a 1  constraints (Gutfreund and Stein 1990). Now, it is clear 
that for L, 2 L,  the student has the computational p e r  to reproduce exactly the 
function generated by the teacher. Mr L, < t,, however, the student lacks the 
computational power to reproduce the rule. Thus the relative magnitude of Le and 
L,  allows us to distinguish between realizable and unrealizable rules. As we shall see 
the model behaves very differently in the two cases. 

We focus in our study on the situation where the inputs and outputs are binary 
&1 variables. We note in passing that the case of real, normally distributed inputs 

careful discussion of this issue). Thus, the response of the output unit to input 
S = (S, , S,, . . . , S,) is given by 

- 

..:-,a. .L̂  _̂I. ---..I.- , ...L .----,L-. I^^^ L-..~ ,.___:_Î .I ,I--\ CA_ yrcius LLIG ~ ~ I I C  IG>UIW m ULD LUIILI~ . IOLII  (>cc ~ IUWGVG~~ ~ c i i i u a  ei UL (1771, LUI ii 

u = sgn W,S, . (3) (,I, ) 
Tkaining mnsists of a presentation of P = aN input/output pairs (S ' ,  t ' ) ,  where 

S' represents the lth input and I' is the wrresponding correct output. The inputs 
are assumed to be drawn from a probability distribution p( 5'). We can express the 
training error of the student network as 

P 

E( W )  = 9 e( W ;  S') 
I=1 

(4) 

with 

where the step function O(z) is 1 for positive z and zero othenuise. Since we assume 
the wrrect classification t has been generated by a single-layer perceptron, we have 

where WO is the weight vector of the teacher. The error function thus defined is 
usually referred to as the Paining emor as it measures the error with respect to the 
training examples { S f }  (the following discussion follows the notation and definitions 
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of Seung et al ( lBla) ,  to which we refer the reader for a much more thorough 
discussion of these points). A very useful quantity to define is the generalizntion 
function which measures the performance of the network on the whole input space. 
Thus we have 

R Meir and J F Fontanan 

4 W )  = / d d S ) e ( W ; S )  (7) 

where p( S) is the probability distribution of the examples. Focusing on the case 
where the inputs Si = 43 with equal probability, we obtain an explicit formula for 
the generalization error, 

where 

N 1 
N .  

R =  - c W j W ; "  
i =1  

(Sj 

(9) 

It is clear that E (  W) is nothing but the angle between the student weight vector W 
and the teacher weight vector W O .  

Within the framework of statistical mechanics it is useful to consider the space of 
all networks with a gven training error E( W). This defines a probability distribution 
on the space of networks, given by the canonical distribution with 'temperature' 
T = 1 / P ,  

p(w) = z - L e - P E ( W )  (12) 

where the partition function 2 is given by 

z = T ~ ~ - P E ( W )  (13) 

and the Tr refers to a summation Over all weight configurations consistent with 
equation (2). Note that at zero temperature, P + CO, the partition function reduces 

Having defined a probability distribution over the space of all single-layer net- 
!o the number of networks with minima! training error, 

works, we can now define the average training and generalization errors as 
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where the single brackets indicate the thermal average over the probability distribution 
given h equation (12), and the double averaging symbol indicates an average over 
the input patterns. The free energy is given by the quenched average 

F ( T ,  P) = -T((ln Z)) (16) 

from which the training error as well as the entropy may be obtained by the thermo- 
dynamic formulae 

a F  
8T 

S=--. 

3. Annealed calculation 

In the annealed approximation we replace the average of the logarithm of the partition 
function by the logarithm of the average partition function. This procedure greatly 
facilitates the calculation, and serves as a quick way to obtain bounds in certain cases. 
One should note that there are cases where this approximation yields useless results, 
so it should be used with caution. Thus, we approximate the bee energy hy 

-OFA = In((2)). (19) 

Due to the convexity of the logarithm function we have the useful inequality 

FA < F. (20) 

Performing the averages over the random patterns we obtain the averaged par- 
tition function (for fuller details of a similar calculation the reader may consult the 
paper by Seung ef al (1991)) 

where 

(22) 

(23) 

and eg is given by quation (8). Since we are assuming local fflnStIaintS on the 
gcdect . .~ ight .  w zed the teacher  weigh^ WO we can simplify the expression for G, 
using the property of self-averaging for a sum of independent, idenlically dislributed 
random variables. Thus 

1 RW.WO+QW.W G - - I n T r e  
0 - M  

G, = I n [ l  - (1 - 

Go = (In e w(RwotQw))wn (24) 
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where the average is with respect to the teacher probability distribution. 
In the thermodynamic limit, N -+ CO, the integral (21) is dominated by its value at 

the saddle-point where the derivatives with respect to the four variables Q, Q,  R, R 
vanish. The saddle-point equations are easily derived, yielding 

R Meir and J F Fontanan 

where 

In this limit the annealed free energy density, fA = F, /N ,  is given by the 
expression 

-pfA = - k ~ -  QQ+ G ~ ( Q , %  + a ~ l ( ~ , ~ )  (30) 

where the variables Q, Q, R, R are the solutions of the saddle-pint equations (25E 
(28). The aaining error in this approximation is obtained using equation (17), yielding 

The annealed calculation has the advantage of being free from any mathematical 
delicacies, such as those used in the replica approach, while yielding bounds to useful 
quantities. In a later section, we compare some of the results obtained with this 
approximation to those obtained within the RS theory. 

4. The replica approach 

As mentioned in section 2, the real problem is the evaluation of the quenched free 
energy, which requires the calculation of the average of the logarithm of the partition 
function. 'Ib perform this calculation we use the replica trick (Edwards and Anderson 
1975) 

The evaluation of ((In Z)) is performed by calculating ((2")) for integer 71 and then 
analytically continuing the solution to n = 0. 
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Using standard techniques (Gardner 1988, Gardner and Derrida 1988) one can 
calculate ((Z")),  obtaining 

The dependence of G, on the weights is through the order parameters 

The first order parameter measures the overlap between the weights corresponding 
to two different replicas a and 0. The second measures the magnitude of the weight 
vector in replica a, while the third measures the overlap between the weight vector in 
replica O( and the teacher weight WO. The parameter M appearing in G, is just the 
magnitude of the teacher weight, as given by equation (11). We have also introduced 
the notation 
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Note that, as mentioned earlier, the equations thus obtained are not restricted 
to any specific form of teacher or student constraints. Although we will be mainly 
concerned with the case of symmetrically distributed weights, the formalism can be 
applied with the Same ease to any local constraints on the student and the teacher. 
The case of a random map (Gutfreund and Stein 1%) can be easily recovered by 
setting R = R = W O  = 0. 

4.1. Replica ymntetric solution 

In principle, the saddle-point equations nceded to calculate ((Z")) in the limit N + 03 

must be obtained by taking the derivatives Of the exponent in equation (33) with 
respect to all integration variables. Since these equations are very complicated in 
general, one usually makes the replica ymmefric ansatz, assuming the saddle-point 
equations possess a solution which is symmetric under a permutation of the replica 
indices, i.e. 

9,@ = 9 and = 4 V a  < P 
Q , = Q  and Q , = Q  V a  

R, = R and R, = R V a .  

With the RS ansatz we obtain the following expression for 2% in the limits n -+ 0 
and N + 03, 

H ( x )  = lw D u  

and 

(44) 

The extremum in equation (41) is taken over all order paramctcrs ( q ,  q ,  Q, Q ,  R,  h). 
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The free energy density in the RS approximation is then given by 

- Of = - QQ - R R  + CO + aG,. (47) 

The generalization error is given in this case by equation (S), while the training error 
is calculated to be 

It is interesting to note that the training error always vanishes at zero temperature, 
unlers -+ 00 or equivalently q - Q, which implies the existence of a unique 
network minimizing the training error. By unique we mean that any other network 
would differ by a finite number of weights in the thermodynamic limit In the 
unrealizable case we expect, however, that there is a critical value of a above which 
L._ U ~ U M ~  CUUL w IIVII-LGLU GVGIL ar KIU rcmperdrure. we nave cnecKeo mar our ns 
equations never possess a solution at T = 0 with q - Q,  and thus non-zero training 
error. Thus we conclude that a non-zero training error at zero temperature is not 
passible within the Rs framework, which implies that replica symmetry-breaking is 
required in this case. 

The replica symmetric saddle-point equations are obtained from equation (41). 
yielding 

rLn c":":"" __-_ :" "-- -~ - -  .̂ ---- ~ ..-. 1.r. L . ~ ~ .  -.~--.~~1 . .~~. ~~~~ -- 

R =  (W'JDzW) 
WO 

2 Q -  R -  q = - Q + - R  
4 P 

Here 

and 

q -  R 2 / M  1 ' 2 t  

Q - n  ) 

We defer discussing the solutions to these equations to section 5. 
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4.2. Stabildy of h e  replica symmetric solution 

In using the replica symmetric ansatz for the saddle-point it is important to check that 
the solution is in fact locally stable. An instability of the solution is determined by a 
sign change in (at least) one of the eigenvalues of the matrix of quadratic fluctuations 
around the RS solution. Following the analysis of Gardner and Derrida (1988) it can 
be shown that the stability is determined by the eigenvalues of the matrix 

R Meir and J F Fontanari 

where a2G, is the $n(n + 3)dimensional matrix of second derivatives of 
G,,(Gap,Qa,ka) with respect to its arguments, and similarly a2G1 is the matrix 
of second derivatives with respect to qop, Q a ,  E,. Requiring all the eigenvalues of 
this matrix to be positive leads to the replica symmetric stability condition (Gardner 
and Derrida 1988) 

a Y o Y l  < 1 (59) 

where yo and y, are the transverse eigenvalues of the matrices a2Go and a2G, 
respectively, and are given by 

where 

with [, and t2 given in equations (45) and (46) respectively, and w" by equation (55). 

5. Analysis of the results 

In this section we discuss the results obtained by solving the RS saddle-point equa- 
tions (49)-(54). We assume throughout that the teacher weights Wf are drawn from a 
uniform distribution over the set of allowed values k l / L t , i 2 / L t ,  ..., kl. An easy 
calculation shows that in this case the magnitude of the teacher weight, equation (ll), 
is given by 
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An interesting issue which can easily be addressed within the approach presented in 
section 4 is that of the effect of the complexity of the network, measured by L,, 
on the performance of the system. At this point it is helpful to interpret our results 
using the connection to the multi-layer network described in section 2 For the sake of 
completeness, we also present phase diagrams describing the behaviour of the system 
as a function of the two variables a and 7'. Finally, we compare the learning curves 
predicted by the RS theory to Monte Carlo simulations. We use the term learning 
curve to refer to a plot of the generalization error against the size of the training set. 

It is important at this point to discuss four values of a, the fractional number of 
training examples, which are relevant to the analysis of the system: 

(i) aZE: The value at which the entropy of the RS solution becomes negative. AF is 
well known, the entropy of a discrete probability distribution (i.e. one taking on only a 
discrete set of possible values) is always non-negative. Since in the models considered 
in this paper the probability distributions are always discrete (due to the discreteness 
of the weights), a negative entropy implies an unphysical situation. Bearing in mind 
that the number of solutions with a given training error is e N S ,  we can conclude that 
at aZE this number is bounded by a polynomial in N .  

(ii) aTH: The value of a below which the non-zero generalization error phase is 
the equilibrium phase, while the zero generalization error phase is metastable. Above 
aTH, the situation is reversed. 

(iu) aAT: The de Almeida-Thouless point, at which the RS solution becomes 
locally unstable. This is a good indication of the correctness of the RS solution only 
if it occurs before aZE. 

(iv) a,: the point at which the solution with non-zero generalization error dis- 
appears. Once the student has been exposed to P > a , N  training examples, the 
only solution consistent with the training set is the one with zero generalization er- 
ror, which & equivalent to the teacher solution (up to a finite number of weight 
components). This situation is possible only in the realizable cases. 

Similarly to Gutfreund and Stein (1990) we find that at zero temperature aZE < 
aAT < a=, the last inequality holding within our numerical precision. 

5.1. The effect of the architecture 

It has been established by Gyorgy (1990) and Seung et ai (1991) that there is a 
discontinuous transition to perfect generalization for the case of a binary student 
and teacher ( L ,  = L,  = 1). This transition takes place at aZE = 1.245 for zero 
temperature. The first question we asked was how aZE and Ac,, the size of the jump 
in the generalization error, scale with the number of levels of the student and teacher. 
In figure 1 we show the zero temperature learning curves for Lt = L, = L = 1,2,3.  
The most striking feature of this graph is that Ac, for the cases L = 2 , 3  is about 
a third the size of the jump at L = 1. In fact, if we plot Ae, against L we find a 
rather abrupt jump at L = 1 and a much smoother decrease beyond that, as can be 
seen in figure 2 The size of the jump is well fittted, for L > 4, by a power decay of 
the form Ae, = a L - * .  We also note that the annealed results agree very well with 
the RS theory, the agreement improving as L increases. We find a = 0.21, b = 0.90 
for the RS case, and a = 0.22, b = 0.85 for the annealed case. It is evident in 
figure 3 that aZE scales linearly with L both for the Rs and the annealed case. The 
fit to a linear curve is almost perfect if we eliminate the p i n t  L = 1. The larger 
slope of the line in the annealed case is consistent with the bound, equation (20), 
which implies (for zero training error) that SA 3 S, keeping in mind that the number 
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C 1.0 I I I 
I I I I I '  1 

0 1 2 3 4 5 6 7  
U 

Plgore 1. Zero temperature learning curves for the aaclly realizable cases L, = L ,  = L 
for L = 1 (full N N ~ ) .  L = 2 (long bmken curve) and L = 3 (shon bmken curve). 
The venical lines represent the zero entropy p i n &  for each case. 

of networks with zero training error is given by eNs.  The analogous curves for the 
over-realizable me L,  > L,  look very similar, although as we will show later, the 
iearning curves are quaiitativeiy diiierent. Ye note that rhe aimosr iinear dependence 
of aZE on L, is not a feature only of the particular architecture, but also of the 
training task. For example, the shape of this curve in the random map problem is 
very different (Gutfreund and Stein 1990). 

5.2. Phase diagram 

Let us now focus on the phase diagram, Le. the different phases of the system as a 
function of a and temperature T. The situation here is very similar to that discussed 
by Seung et a1 (1991). 

In figure 4, for example, we plot the phase diagram in the over-realizable case 
L, = 2, L ,  = 1. At zero temperature there are two points of interest. For a < aZE 
the entropy is positive, implying the existence of an exponential number of networks 
with zero training error. The replica symmetric entropy becomes negative at aZE = 
5.54 implying that it is no longer physical. Beyond this point, the only physical 
solution we find is that with cg = 0, which has zero entropy. At a higher value 
of a, a, = 6.65, we find that the RS solution with non-zero generalization error 
disappears altogether. It should be noted that we cannot rule out the existence of 
an additional solution with broken replica symmetry and positive entropy even below 
aZE. We have performed the stability analysis of the RS solution and found that it is 
always locally stable, even at a, (although it cannot be the correct solution since it 
is unphysical for a > aZE). The situation becomes simpler at higher temperatures, 
as can be seen in the figure. There are only two lines of interest above T - 0.3. For 
a < a T H ( T )  we find an equilibrium RS solution with non-zero generalization error 
as well as a metastable solution with cg = 0. Above a,,(T) the eg = 0 solution 
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3 0  - 

25 

2 0  

cn 

a 

0.1 0 

0.05 - 

0.00 ~I, 
0 2 4 6 8 10 

L 

F@re Z jiii of the jeiaiiip in the geiiemiiiaiion eume ai a z ~  againsi i, ior the 
a a a i y  realizable m e  L. = Lt = L, plotted at zem temperature. The circles are the 
m u l l s  of the !as dculalion, while the triangles are those of the annealed approximation. 
' I l ~ h e  full curves represent kst  fit polynomials. 
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0.8 

0.6 

c 

0.0 
5 6 7 8 9 1 0 1 1  

a 
F@n 4 Phase diagram for the mer-realizable case L. = 2 and Lt = 1. lb the left 
of the line marked DLTH the cg > 0 solution is the equilibrium one, while the eg = 0 
solution is metastable. T i s  situation is rwened for OTH < 01 < 0 1 ~ .  The cg > 0 
solution disappears at 0 1 ~ .  The tine marked O ~ Z E  ir the line below d i c h  the RS entropy 
becomes negalive. 

qualitatively similar for other values of L,  and L,  in the realizable regime. 
In the unrealizable regime, however, the situation is very different. There is a 

line in the ( a , T )  plane on which the entropy vanishes. We have again checked 
that the RS solution is indeed stable for a < azE(T) .  Finding the correct solution 
for Q > azE(T)  requires performing (at least) one step replica symmetry-breaking 
(RSB). We have not performed this analysis, since the RS theory seems to be in 
good agreement with simulation results, presented later. We expect that the correct 
solution beyond aZE( T) has zero entropy, thus leading to a situation similar to the 
random energy model of Derrida (1981) which possesses a zero entropy frozen phase 
at non-zero temperature. 

We present, in figure 5, plots of the zero entropy line for the three unrealizable 
cases L,  = 1 and L,  = 2,5,10. The small difference between the L,  = 5 and L,  = 
10 resulrs indicate that the distance between the curves becomes increasingly small 
as L,  grows further. It is interesting to observe that the results for low temperatures 
are a h ”  indistinguishable, implying that the critical p i n t  beyond which the binary 
student cannot perfectly learn the training set is almost independent of the complexity 
of the teacher. We expect that as the complexity of the teacher increases beyond that 
of a single-layer perceptron, the value of aZE should decrease, although in the worst 
possible situation, that of the random map (Krauth and Mezard IW), the value of 
aZE is 0.83, which is not too far from our results of aZE % 1.2. 

5.3. Leaming curves 

We have already presented the learning curves for the case L, = L, in the previous 
section, for zero temperature. In this section we focus on the non-zero tempera- 
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0.6 - 

+ / 
, 

I // 

0.0 
0 1 2 3 4 5 6 7  

a 
Flgu¶t 5. Zero entropy lines for the unrealizable gse~ L, = 1 and Lt = 2 (full curve), 
Lt = 5 (long h k e n  cume) and L, = 10 (shorl broken CUN~). In each case the Rs 
entmpy becomes negative below the mrresponding line. 

ture learning curves, with the goal of comparing the RS results with Monte Carlo 
simulations. The reason for considering non-zero temperatures here is to avoid the 
local minima problem which is more pronounced at low temperatures (Fontanari and 
Koberle 1990). We concentrate on the differences between the exactly realizable, 
the over-realizable and the unrealizable cases. Since in real applications of neural 
networks one rarely knows the correct architecture, it would be very useful to obtain 
this information by observing the experimental learning curves. We plot in figure 6 
the training and generalization curves for the exactly realizable case L,  = L,  = 2 at 
T = 1.0. It can be seen that the generalization error decreases monotonically with 
a, until ac, at which point the eg = 0 solution becomes the only solution. As can 
be seen in the figure, the simulation results seem to agree very well with the theory, 
except in the region near a,. We believe the disagreement in this region is due to 
the increase in thermalization time required near the phase transition, as well as to 
b i t e  size effects. 

The situation in the over-realizable case, L ,  = 2 , L ,  = 1, shown in figure 7, is 
very different. After a sharp initial decrease in the generalization error the curve 
flattens out and decreases very slowly for larger a. The same situation occurs with 
the training curves. We have observed this behaviour for all the over-realizable cases 
we studied. Again, we see that the Monte Carlo simulations agree with the RS theory. 

In the unrealizable case there is no solution with zero generalization error. The 
situation here is reminiscent of the random map problem where the target is drawn 
at random. There is a critical number of examples a = azE(T)  below which the 
entropy of the RS solution is positive (the training error at zero temperature is zero 
for this solution). For a > az,(T) however, the replica symmetric solution is 
no longer physical (negative entropy), and we expect the training error to increase 
monotonically with a. We have found that the aAT > aZE, which implies one 
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0.0 I 1 1 7  I 

0 2 4 6 8 10 
a 

Flgum 6. Monte Carlo simulation results for training (A) and generalization (0 )  ermm 
m the exactly realizable case L, = Lt = 2 and N = 75 at T = 1. Each p i n t  is an 
average of 30 samples. The liner are the us results, which terminate ai ole. The venical 
line mark the thermodynamic transition, D ~ T H  = 7.660. 

0.0 t , I I I I 
0 2 4 6 8 10 a 

Flpm 7. Same as figure 6, for the wer-realizable m e  L, = 2 and L ,  = 1. 
thermodynamic Vansition m u m  at D ~ T H  = 10.235. 

of two possibilities. Either there is a solution with RSB and positive.entropy even 
below aZE, or there is a solution with zero entropy and broken replica symmetry 
above aZE. Krauth and Mezard (1989) have found in the case of the random map 
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that the latter situation occurs. 'RI check the reliability of the RS solution, we have 
performed Monte Carlo simulations a t  T = 1 .O. In figure 8 we plot the training and 
generalization curves for the unrealizable case L, = 2 and L, = 1. As can be seen, 
the generalization error decreases monotonically, asymptotically converging to the 
minimum generalization error, emin = 0.102, obtainable for the given architecture. 
The agreement between the simulation results and the theory is surprisingly good 
considering the rather small number of units used, even in the regime where the Rs 
solution is known to be unphysical. Simulations at T = 0.5 also give good agreement 
with the theory, although much longer equilibration times are needed in this case. 

0.0 I I I I I I 

0 2 4 6 8 10 
a 

Figure U Same as figure 6, for lhe unrealizable case L. = 1 and Lt = 2.  ?be wnical 
!he here is the zem entropy pint,  ~ Z E  = 5.315. 

'RI further highlight the difference between the three cases, we have plotted the 
training and generalization curves at T = 0.5. As can be seen in figures 9 and 10, 
both the training and generalization errors in the over-realizable case decrease faster 
for small =lues of a than in the exactly realizable case. However, as a increases 
further, the generalization error in the over-realizable case becomes larger than in 
the exactly realizable case, due to the excessive number of degrees of freedom in the 
former case. An interesting feature of this plot is the qualitative difference between 
these two curves. The generalization error in the exactly realizable case decreases 
smoothly, while in the over-realizable case there is a sharp initial decrease followed hy 
a long plateau. This behaviour can actually be seen in the simulation results presented 
in figures 6 and 7. This difference could be used as an indicator of the compatibility 
of the architecture with the learning task. In the unrealizable case we note that for 
small a, both the training and generalization errors are almost indistinguishable from 
the exactly realizable case. It is interesting to note that the training error increases 
once c2 2 aZE, since in this regime the network can no longer fit the training data, 
due to its limited architecture. 
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0.00 j 
0 2 4 6 8 I O  

a 
P@m 9. Generalization ermr at T = 0.5 against (I for the three pa= L,  = 
2, Lt = 2 (exactly realizable, full cuwe), L, = 2 ,  Lt = 1 (over-realizable, long h k e n  
"e) and L. = 1 ,  Lt = 2 (unrealizable. short broken atwe). Ihe thermadynamic 
Vansition pints  are given by (ITH = 5.103(eraclly realizable), 6.952(over-realkable) 
and D ~ Z E  = 2.580 for the unrealizable cas. 

0.3 
Pl 

W 

0.2 

0. I 

0.0 I 
0 2 4 6 8 I O  

a 
Flgum 10. Same as Bgure 9 but for the lraining m r .  

6. Conclusion 

We have extended the statistical mechanics calculations of learning curves to a large 
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class of problems. In particular, it is possible to obtain results for any local dis- 
tribution of teacher or student weights, although we have focused on symmetrically 
distributed discrete weights. Our results have mainly been concerned with the differ- 
ent behaviours of the system in the exactly realizable, over-realizable and unrealizable 
caseS. 

Our main results, obtained within the replica symmetric framework, are the fol- 

(i) All realizable models studied exhibit a discontinuous transition to perfect 
generalization after being exposed to a certain number of examples. However, the 
Size of the jump in the generalization error decreases rapidly from the case of binary 
(il) weights to the case of multi-level weights. 

(ii) The wlue of the critical number of examples aZE, at which the number of 
solutions becomes non-exponential in N, scales linearly with the number of allowed 
weight levels (the fit b especially good if the binary case is excluded). 

(iii) The shapes of the generalization curves are very different in the exactly 
realizable and over-realizable case. We find, in particular, that the training and 
generalization errors in the latter case have a much longer tail than in the former 
case. 

(iv) The relationship between the training and generalization error is not al- 
ways straightfonvard. Different situations arise depending on the relevant parameters 
a, T, L, and L,. 

(v) We find in all cases studied that the zero entropy Line occurs before the 
instability point of the replica symmetric solution. This result was also observed by 
Gutfreund and Stein (1990) in the context of random maps. However, in distinction 
with their results we find in the realizable cases that the solution with non-zero 
generalization error disappears (this point corresponds to what is referred to as 
the GardnerDerrida point) before the FS solution becomes unstable. In any event 
however, the RS solution is unphysical once its entropy is negative. 

A general and important question in the theory of learning is the dependence of 
the learning curves on the learning algorithm. All our results, are in fact correct for 
a learning algorithm which is just the Monte Carlo dynamics in weight space, using 
the training error (4) as the a t  function. It would be interesting to see if similar 
learning curves result from alternative error functions (Duda and Hart 1973), and 
thus different learning algorithms. In this context it would be particularly interesting 
to find out whether the different shapes of the learning curves in the over-realizable, 
exactly realizable and unrealizable cases are a general feature or are specific to our 
choice of the error function. In the former case, keeping in mind the analogy with a 
multi-layered network mentioned in section 2, it would perhaps be possible to use the 
shapes of the curves to decide whether the network used is suitable for the learning 
task 

The general problem of learning algorithms for weigbtconstrained networks is, 
to the best of our knowledge, still an open one. The only algorithm we are aware of, 
which specifically addresses this issue in the context of binary weights is the directed 
drift algorithm recently proposed by Venkatesh (1991) (see also Fontanari and Meir 
(1991)). This problem is under current investigation. 

lowing. 
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